CJ:Enterprise code
M:Moulded case circuit breaker
1:Design No
□:Rated current of frame
□:Breaking capacity characteristic code/S denotes standard type (S can be omitted)H denotes higher type
Note: There are four types of neutral pole (N pole) for four phases product.The neutral pole of type A is not equipped with over-current tripping element, its always switched on, and it is not switched on or off together with other three poles.
The neutral pole of type B is not equipped with over-current tripping element, and it’s switched on or off together with other three poles(the neutral pole is switched on before being switched off)The neutral pole of type C is equipped with over-current tripping element, and it’s switched on or off together with other three poles(the neutral pole is switched on before being switched off) The neutral pole of type D is equipped with over-current tripping element, it’s always switched on and is not switched on or off together with other three poles.
Accessory name | Electronic release | Compound release | ||||||
Auxiliary contact,under voltage release,alam contact | 287 | 378 | ||||||
Two auxiliary contact sets,alarm contact | 268 | 368 | ||||||
Shunt release, alarm contact, auxiliary contact | 238 | 348 | ||||||
Under voltage release,alarm contact | 248 | 338 | ||||||
Auxiliary contact alarm contact | 228 | 328 | ||||||
Shunt release alarm contact | 218 | 318 | ||||||
Auxiliary contact under-voltage release | 270 | 370 | ||||||
Two auxiliary contact sets | 260 | 360 | ||||||
Shunt release under-voltage release | 250 | 350 | ||||||
Shunt release auxiliary contact | 240 | 340 | ||||||
Under-voltage release | 230 | 330 | ||||||
Auxiliary contact | 220 | 320 | ||||||
Shunt release | 210 | 310 | ||||||
Alarm contact | 208 | 308 | ||||||
No accessory | 200 | 300 |
1 Rated value of circuit breakers | ||||||||
Model | Imax (A) | Specifications (A) | Rated Operation Voltage(V) | Rated Insulation Voltage(V) | Icu (kA) | Ics (kA) | Number of Poles (P) | Arcing Distance (mm) |
CJMM1-63S | 63 | 6,10,16,20 25,32,40, 50,63 |
400 | 500 | 10* | 5* | 3 | ≤50 |
CJMM1-63H | 63 | 400 | 500 | 15* | 10* | 3,4 | ||
CJMM1-100S | 100 | 16,20,25,32 40,50,63, 80,100 |
690 | 800 | 35/10 | 22/5 | 3 | ≤50 |
CJMM1-100H | 100 | 400 | 800 | 50 | 35 | 2,3,4 | ||
CJMM1-225S | 225 | 100,125, 160,180, 200,225 |
690 | 800 | 35/10 | 25/5 | 3 | ≤50 |
CJMM1-225H | 225 | 400 | 800 | 50 | 35 | 2,3,4 | ||
CJMM1-400S | 400 | 225,250, 315,350, 400 |
690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
CJMM1-400H | 400 | 400 | 800 | 65 | 35 | 3 | ||
CJMM1-630S | 630 | 400,500, 630 |
690 | 800 | 50/15 | 35/8 | 3,4 | ≤100 |
CJMM1-630H | 630 | 400 | 800 | 65 | 45 | 3 | ||
Note: When the test parameters for the 400V, 6A without heating release |
2 Inverse time breaking operation characteristic when each pole of overcurrent release for power distribution is powered on at the same time | ||||||||
Item of test Current (I/In) | Test time area | Initial state | ||||||
Non-tripping current 1.05In | 2h(n>63A),1h(n<63A) | Cold state | ||||||
Tripping current 1.3In | 2h(n>63A),1h(n<63A) | Proceed immediately after No.1 test |
3 Inverse time breaking operation characteristic when each pole of over- current release for motor protection is powered on at the same time. |
||||||||
Setting Current Conventional time Initial State | Note | |||||||
1.0In | >2h | Cold State | ||||||
1.2In | ≤2h | Proceeded immediately after the No.1 test | ||||||
1.5In | ≤4min | Cold State | 10≤In≤225 | |||||
≤8min | Cold State | 225≤In≤630 | ||||||
7.2In | 4s≤T≤10s | Cold State | 10≤In≤225 | |||||
6s≤T≤20s | Cold State | 225≤In≤630 |
4 The instantaneous operation characteristic of circuit breaker for power distribution shall be set as 10in+20%, and the one of circuit breaker for motor protection shall be set as12ln±20% |
CJMM1-63, 100, 225, Outline and Installation Sizes (Front board connection)
Sizes(mm) | Model Code | |||||||
CJMM1-63S | CJMM1-63H | CJMM1-63S | CJMM1-100S | CJMM1-100H | CJMM1-225S | CJMM1-225 | ||
Outline Sizes | C | 85.0 | 85.0 | 88.0 | 88.0 | 102.0 | 102.0 | |
E | 50.0 | 50.0 | 51.0 | 51.0 | 60.0 | 52.0 | ||
F | 23.0 | 23.0 | 23.0 | 22.5 | 25.0 | 23.5 | ||
G | 14.0 | 14.0 | 17.5 | 17.5 | 17.0 | 17.0 | ||
G1 | 6.5 | 6.5 | 6.5 | 6.5 | 11.5 | 11.5 | ||
H | 73.0 | 81.0 | 68.0 | 86.0 | 88.0 | 103.0 | ||
H1 | 90.0 | 98.5 | 86.0 | 104.0 | 110.0 | 127.0 | ||
H2 | 18.5 | 27.0 | 24.0 | 24.0 | 24.0 | 24.0 | ||
H3 | 4.0 | 4.5 | 4.0 | 4.0 | 4.0 | 4.0 | ||
H4 | 7.0 | 7.0 | 7.0 | 7.0 | 5.0 | 5.0 | ||
L | 135.0 | 135.0 | 150.0 | 150.0 | 165.0 | 165.0 | ||
L1 | 170.0 | 173.0 | 225.0 | 225.0 | 360.0 | 360.0 | ||
L2 | 117.0 | 117.0 | 136.0 | 136.0 | 144.0 | 144.0 | ||
W | 78.0 | 78.0 | 91.0 | 91.0 | 106.0 | 106.0 | ||
W1 | 25.0 | 25.0 | 30.0 | 30.0 | 35.0 | 35.0 | ||
W2 | - | 100.0 | - | 120.0 | - | 142.0 | ||
W3 | - | - | 65.0 | 65.0 | 75.0 | 75.0 | ||
Install Sizes | A | 25.0 | 25.0 | 30.0 | 30.0 | 35.0 | 35.0 | |
B | 117.0 | 117.0 | 128.0 | 128.0 | 125.0 | 125.0 | ||
od | 3.5 | 3.5 | 4.5 | 4.5 | 5.5 | 5.5 |
CJMM1-400,630,800,Outline and Installation Sizes (Front board connection)
Sizes(mm) | Model Code | |||||||
CJMM1-400S | CJMM1-630S | |||||||
Outline Sizes | C | 127 | 134 | |||||
C1 | 173 | 184 | ||||||
E | 89 | 89 | ||||||
F | 65 | 65 | ||||||
G | 26 | 29 | ||||||
G1 | 13.5 | 14 | ||||||
H | 107 | 111 | ||||||
H1 | 150 | 162 | ||||||
H2 | 39 | 44 | ||||||
H3 | 6 | 6.5 | ||||||
H4 | 5 | 7.5 | ||||||
H5 | 4.5 | 4.5 | ||||||
L | 257 | 271 | ||||||
L1 | 465 | 475 | ||||||
L2 | 225 | 234 | ||||||
W | 150 | 183 | ||||||
W1 | 48 | 58 | ||||||
W2 | 198 | 240 | ||||||
A | 44 | 58 | ||||||
Install Sizes | A1 | 48 | 58 | |||||
B | 194 | 200 | ||||||
Od | 8 | 7 |
Back Board Connection Cut-out Diagram Plug In
Sizes(mm) | Model Code | ||||||
CJMM1-63S CJMM1-63H |
CJMM1-100S CJMM1-100H |
CJMM1-225S CJMM1-225H |
CJMM1-400S | CJMM1-400H | CJMM1-630S CJMM1-630H |
||
Sizes Of Back Board Connection Plug in Type | A | 25 | 30 | 35 | 44 | 44 | 58 |
od | 3.5 | 4.5*6 deep hole |
3.3 | 7 | 7 | 7 | |
od1 | - | - | - | 12.5 | 12.5 | 16.5 | |
od2 | 6 | 8 | 8 | 8.5 | 9 | 8.5 | |
oD | 8 | 24 | 26 | 31 | 33 | 37 | |
oD1 | 8 | 16 | 20 | 33 | 37 | 37 | |
H6 | 44 | 68 | 66 | 60 | 65 | 65 | |
H7 | 66 | 108 | 110 | 120 | 120 | 125 | |
H8 | 28 | 51 | 51 | 61 | 60 | 60 | |
H9 | 38 | 65.5 | 72 | - | 83.5 | 93 | |
H10 | 44 | 78 | 91 | 99 | 106.5 | 112 | |
H11 | 8.5 | 17.5 | 17.5 | 22 | 21 | 21 | |
L2 | 117 | 136 | 144 | 225 | 225 | 234 | |
L3 | 117 | 108 | 124 | 194 | 194 | 200 | |
L4 | 97 | 95 | 9 | 165 | 163 | 165 | |
L5 | 138 | 180 | 190 | 285 | 285 | 302 | |
L6 | 80 | 95 | 110 | 145 | 155 | 185 | |
M | M6 | M8 | M10 | - | - | - | |
K | 50.2 | 60 | 70 | 60 | 60 | 100 | |
J | 60.7 | 62 | 54 | 129 | 129 | 123 | |
M1 | M5 | M8 | M8 | M10 | M10 | M12 | |
W1 | 25 | 35 | 35 | 44 | 44 | 58 |
MCCB is shorthand for Moulded Case Circuit Breaker. When the total current surpasses the limitation of a micro fuse box, the user employs it as just another sort of overcurrent protection device. The MCCB protects from overvoltages as well as fault current failures, as well as shifting the circuits.
Users may utilize it even in household applications for more outstanding current ratings and fault occurs levels. Users use MCCBs in commercial processes because of their average comprehensive ratings and high breakdown capacity. MCCBs can also safeguard capacitor banks, generators, and the distribution of main electric feeders. When an application requires discriminatory practices, customizable overloading settings, or ground-fault security, it provides suitable protection.